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A global, Pareto, and parallel optimization method for low-thrust orbit transfers
is developed by applying a multi-objective parallel genetic algorithm to the
Primer Vector control law. Complex trajectories are parameterized with the well-
known Primer Vector control law using only the initial values of a co-state
vector. The multi-objective parallel genetic algorithm searches for initial values
that lead to mass- and time-optimal trajectories that satisfy a prescribed final
target condition. The optimization method yields a set of Pareto-optimal
solutions, which demonstrate the trade-off between ΔV and flight time for a
given low-thrust orbit transfer. The method is applied to three different
multiple-revolution orbit transfer problems: 1) a two-body orbit transfer around
the Earth, 2) a restricted three-body, coplanar distant retrograde orbit (DRO)
transfer around Europa, and 3) a restricted three-body, non-coplanar DRO
transfer around Europa. The resulting Pareto-optimal solutions are comparable to
those from state-of-the-art optimization tools such as Mystic and GA-Q-Law.

INTRODUCTION

NASA’s Deep Space 1 mission has demonstrated that a low-thrust propulsion
system can reliably operate for a long period of time with a low cost of propellant thanks
to its high specific impulse. As low-thrust propulsion systems are now a proven
technology, a host of future missions are considering this efficient alternative to reduce
mission cost and increase final payload mass. A low-thrust propulsion system requires a
longer period of thrusting than a chemical propulsion system in order to accelerate a
spacecraft to the same final velocity. Therefore, the low-thrust trajectory involves a
continuously changing thrust profile as opposed to the impulsive maneuvers found in a
traditional high-thrust trajectory. It is the complex thrusting profile that makes the design
of optimal low-thrust trajectories very challenging.

Various methodologies have been applied to the optimization of low-thrust
trajectories. Broadly speaking, there are three philosophically different approaches for
trajectory optimization as for optimization problems in general. They are 1) deterministic
optimization, 2) probabilistic optimization, and 3) control strategy development.
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Deterministic optimization utilizes numerical optimal control methods that are based on
principles such as the calculus of variations, nonlinear programming methods, neighboring
extremal methods, and gradient-based methods [1-6]. These methods are deterministic
because for a given initial guess the final result is always identical in every run.  In
contrast, probabilistic optimization utilizes randomness in the search process. Some
examples are Monte Carlo algorithms, evolutionary algorithms, simulated annealing, and
cultural programming [7-10]. Finally, control strategy development aims at finding
efficient control laws that indirectly yield optimal or near- optimal solutions.  The
feedback control laws can be designed as stand-alone tools or wrapped by optimizers
such as evolutionary algorithms and evolving neural networks [11-17]. 

Each of these approaches emphasizes different aspects of the optimization. The
deterministic optimization approach tends to be a local optimizer because it uses first- or
second-order derivatives (i.e. local environment) of one potential solution to update the
solution in iterations. The probabilistic optimization approach is designed to be a global
optimizer by replacing the local-environment feedback with the global-environment
feedback. Examples include statistical sampling in Monte Carlo method, reproduction
mechanisms in evolutionary algorithms, Metropolis algorithms in simulated annealing, and
swarm intelligence principles in Particle Swarm Optimization. The control strategy
development approach finds the common rule that can be applied to a suite of
trajectories. Thus, it is more efficient and general but not necessarily optimal for a
particular trajectory.

The paper presents a hybrid method that combines the control strategy and
probabilistic methods. The control component of the hybrid method is the Primer Vector
control law [3-6].  This is a feedback law for determining the thrust vector and is a
function of the current co-state only.  It implicitly satisfies optimality conditions with
regard to the thrust magnitude and direction.  The probabilistic part is a multi-objective
genetic algorithm [18-20] that directly optimizes the initial co-state vector to minimizes
the propellant mass and the flight time for a given low-thrust orbit transfer problem.

This hybrid approach is particularly attractive because it avoids one of the problems
typically associated with indirect methods: i.e. gradients and transversality conditions
must be tediously re-derived each time an objective or constraint is changed. The
transversality conditions are implicitly satisfied by directly optimizing the initial co-
states, and the gradients are not required for the current genetic optimization methods.
Therefore, the problem can be tailored for custom applications with relative ease
compared to traditional methods.

The application of genetic/evolutionary algorithms to trajectory optimization has
recently gained popularity and is shown to be efficient in generating globally optimal
solutions and initial guess values for subsequent refinement and local optimization. Just
to name a few, a multi-objective genetic algorithm is used to optimize the control
parameters of Lyapunov feedback control law named Q-law for low-thrust two-body



3

orbit transfers [15-17], a combination of evolution programming and branching is used to
optimize interplanetary trajectories [21], a combination of multi-objective genetic
algorithm and nonlinear programming is applied to optimize orbit escape and capture and
interplanetary transfer [22], a genetic algorithm is applied to optimize low-thrust Earth-
Mars trajectories [23], impulsive maneuvers and gravity assists in deep-space
interplanetary trajectories are optimized using a genetic algorithm [24], and optimal
continuous thrust orbit transfers are found using evolutionary strategies [25].     

In this paper, the structure of the developed hybrid method is described and is
followed by the application of the hybrid method to three multiple-revolution low-thrust
trajectory optimization problems that include two-body orbit transfers and three-body
orbit transfers. The optimization results are presented in terms of Pareto fronts and
corresponding trajectories. In two of the cases, the optimization performance of the
hybrid method is compared with other state-of-the-art optimizing methods. This paper
complements and expands upon the research that is overviewed in Refs. [26,27].

APPROACHES

Primer Vector Control Law

The Primer Vector control law is a well known result of the application of calculus of
variations to the low-thrust spacecraft problem. See Refs. [3-6] for detailed equations,
derivations, and applications.  The Primer Vector theory introduces a co-state vector and
“indirectly” optimizes the thrust control variables by adjusting the initial values of the co-
state vector. This method uses the optimality conditions (Euler-Lagrange equations) that
arise from calculus of variations to transform the control vector into a function of the
current co-states only. Traditionally, this transformation combined with the Euler-
Lagrange boundary conditions, or the so-called transversality conditions, leads to a two-
point boundary-value problem, whose solution inherently satisfies the necessary
conditions for local optimality. In the current approach, any applicable transversality
conditions are ignored, and the initial values of the co-states are iterated to directly
optimize the desired objective.

The spacecraft state and co-state equations are propagated and the thrusting
magnitude and direction at all times satisfy the necessary conditions for optimality.  This
consists of thrusting with a maximum thrust in the direction of the Primer Vector when
the prescribed switching function is positive and turning off thrust when the switching
function is negative.  To avoid discontinuities in the equations of motion, the propagation
is interpolated to stop exactly when the switching function changes sign.  In this manner
the integration is cycled through a series of “bang-bang” maneuvers with no limit or
preconceived notion of number of switches.  The integration is stopped when some
maximum time is achieved or a user defined stopping condition is met.

An adjoint control transformation is applied to the initial conditions to map
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physically meaningful control variables to the more abstract initial co-states that are
required to implement the Primer Vector theory.  The six alternative initial co-state values
named alpha, alpha dot, beta, beta dot, switching function, and switching function dot are
related to thrust angles and thrust on/off conditions.  Alpha controls the thrust angle
defined in the orbit plane perpendicular to the angular momentum, and alpha dot is the
time derivative of the thrust angle.  Similarly, beta controls the thrust angle off the orbit
plane, and beta dot controls the time derivative of the angle.  Both alpha and beta are
orientation angles expressed in a reference frame that aligns its x axis with the spacecraft
velocity and its z axis with its angular momentum.  Finally, the switching function and its
time derivative (switching function dot) helps in determining the initial frequency of
switching times, i.e. when to thrust or coast.  Remarkably, with the six variables, a
complicated trajectory can be uniquely defined and controlled. The orbit propagator
implemented in this study including the adjoint control transformation is described in
detail in Ref. [6]

Multi-objective Parallel Genetic Algorithm

A genetic algorithm is tuned to efficiently solve the optimization problem formulated
within the Primer Vector control law. While following the basic procedure of the genetic
algorithms, several special features are added in the ranking/fitness-assignment process.
The key aspects of the refined genetic algorithm are described below: 1) stochastic
ranking, 2) non-dominated sorting, 3) fitness sharing, 4) parallel computing.

Stochastic Ranking: Our optimization problem is constrained and has multiple
objectives. Meeting the constraints and improving the objectives are often competing
tasks. Typically, the constraints are treated with a penalty function, and the penalty
function and the objective function are combined into a single scalar fitness function with
associated weights. In this scheme, the optimization direction and outcome are sensitive
to the weights and thus choosing the right weights becomes a critical step in the
optimization process. To avoid the sensitivity, we use stochastic ranking to maneuver the
balance between the two tasks [28]. In the stochastic ranking process, the ranking
criterion is probabilistically chosen between the constraint-based and objective-based one.
Typically, slightly more emphasis on the constraint-based ranking (55%) over the
objective-based ranking (45%) shows the best performance. The stochastic ranking also
involves the user-specified parameter that determines the probability to choose one
ranking criterion over the other. However, the parameter has a more straightforward
meaning to the balancing between the two tasks (meeting the constraints and improving
the objectives).  Hence, it is easier to control the sensitivity of the optimization problem
to the user-specified parameter.   

Non-dominated Sorting: When multiple competing objectives are involved,
improving one objective is often accompanied by degrading other objectives. Hence, the
multi-objective problem gives rise to a set of compromising solutions rather than a single
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optimal solution. The multi-objective aspect of our optimization process is steered by
non-dominated sorting, where solutions are evaluated according to the Pareto-dominance
concept [20]. When comparing two solutions, a solution is termed “Pareto-dominated” if
the solution is inferior to the other solution in all objectives. Otherwise, the solution is
termed “non-Pareto-dominated”. The principle of the multi-objective optimization is to
reward “non-Pareto-dominated” solutions over “Pareto-dominated” solutions. In the non-
dominated sorting, first non-Pareto-dominated solutions in the population are selected,
and they form a first Pareto front. The same selection process is performed for the
remainder of the population excluding the first Pareto front, and the non-Pareto-
dominated solutions form a second Pareto front. This process repeats until all the
members of the population are assigned to a Pareto front. A different fitness value is
assigned to each Pareto front. The first Pareto front is most rewarded in terms of fitness
value, and so on.  

Fitness Sharing: The search space of our optimization problem typically contains
tiny and disjointed feasible spaces (solutions that meet constraints) and even tinier
optimal spaces (Pareto-optimal solutions). In such a search space, a few feasible/sub-
optimal solutions can easily dominate the search direction. To prevent the domination by
a few good initial solutions and hence to obtain an extended Pareto front, a fitness sharing
mechanism is applied [7]. In our application, solutions are divided into a prescribed
number of groups according to their flight times. Each group has the maximum and
minimum flight times allowed. Within the group, the fitness values of all the solutions are
summed and the fitness value of each solution is normalized by the sum. The
normalization process makes the total fitness value of each group to be one. Therefore,
each group has an equal possibility to survive and create offspring. This mechanism
encourages diversity among solutions in terms of flight times.   

Parallel Computing: Parallel computing is incorporated into the genetic algorithm
process in order to accelerate computation. The fitness evaluation in the genetic algorithm
process is highly independent and therefore is easily distributed among multiple
processors in a distributed-memory system. The fitness value is the only message passing
between the processors. As a result, the computational overhead due to the parallel
computing is marginal, and the computation speedup is close to ideal.

Hybrid Method

The Primer Vector control law and the multi-objective parallel genetic algorithm are
coupled to generate Pareto-optimal trajectories for a given problem. In the hybrid method,
the Primer Vector control law implicitly satisfies the Euler-Lagrange equations. However,
the resulting trajectories do not necessarily satisfy the natural boundary conditions
(transversality conditions) nor the terminal condition given by the target state. It is the
task of the multi-objective parallel genetic algorithm to find trajectories that satisfy the
boundary conditions and are globally Pareto-optimal solutions.  While the traditional
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boundary value problem only satisfies necessary conditions for optimality, the hybrid
optimizer employed in this study also approximates the sufficiency conditions because it
guarantees descent. Furthermore, it seeks global minima while the boundary value
problem applies to local solutions only. The overall optimization procedure of the hybrid
method is described in Figure 1.  

Figure 1. Overall procedure of the hybrid method.

ORBIT   TRANSFER   PROBLEMS
Three problems are formulated to test the present method. Each problem has a

different complexity degree and is governed by one of two different dynamical models.
The first problem is a coplanar two-body orbit transfer around the Earth. Since it is a
coplanar transfer, it does not involve thrust along the angular momentum direction, leading
the optimization to only four initial co-state values (alpha, alpha dot, switching function,
and switching function dot). The second problem is a coplanar, restricted three-body,
distant retrograde orbit (DRO) transfer around Europa. This problem is slightly more
complex than the first one due to the three-body orbit dynamics involving Jupiter’s
gravity. The third problem is a non-coplanar, restricted three-body, DRO transfer around
Europa. This problem is most complex since it involves multi-body effects and thrust
both in and out of the orbit plane. The three problems are labeled Problem I, Problem II,
and Problem III, respectively. The details of the orbit parameters of the problems are
listed in Table I, II, and III.

Table 1: Problem I – Initial and target orbit elements, thrust characteristics, and spacecraft initial

1. Randomly populate the initial co-state vector and flight time.
2. Propagate trajectories with the co-state vector and flight time using the Primer

Vector control law. This step is run on multiple processors in parallel.
3. Evaluate the trajectories based on the used propellant mass, the flight time, and the

error of the final state to the target state.
a. Rank the trajectories using the non-dominated sorting (Rank I).
b. Rank the trajectories according to constraint violation degree (Rank II).
c. Mix the Rank I and II using stochastic ranking (Rank III).

 i. For 45% of comparisons, use Rank I result.
 ii. For 55% of comparisons, use Rank II result.

d. Use Rank III as the fitness value of each trajectory.
e. Share the fitness value among the solutions at each flight time zone.

4. Choose parent co-state vector using binary tournament.
5. Create offspring co-state vector using crossover and mutation operations to parents.
6. Increment the generation number by one.
7. Go to Step 2 until the maximum generation number is reached.
8. Final results are constraint-satisfied (to a specified tolerance) and Pareto-optimal

solutions.
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mass for the two-body orbit transfer around the Earth. The orbit elements are given by the semi-
major axis (a), the eccentricity (e), the inclination (i), the argument of the periapsis (ω)), , the
longitude of the ascending node (Ω).

Orbit a
(km)

e i
(degrees)

ω
(degrees)

Ω
(degrees)

Thrust
(N)

Specific
Impulse (s)

Initial
Mass
(kg)

Initial 9222.7 0.2 0.573 0.0 0.0

Target 30000.0 0.7 Free Free Free
9.3 3100 300

Table 2: Problem II – Initial and target states, thrust characteristics, and spacecraft initial mass for
the restricted three-body, coplanar, distant retrograde orbit transfer around Europa. The initial
and target states are given by the position and velocity vector in the rotating frame where Europa is
at the center, the x-axis points along the Jupiter-Europa line, and the z-axis points along the system
angular momentum vector.

State x
(km)

y
(km)

z
(km)

vx

(km/s)
vy

(km/s)
vz

(km/s)
Thrust

(N)

Specific
Impulse

(s)

Initial
Mass
(kg)

Initial 50,445 0 0 0 -2.0600 0

Target 20,579 0 0 0 -0.9995 0
4.98 7365 25000

Table 3: Problem III  – Initial and target states, thrust characteristics, and spacecraft initial mass
for the restricted three-body, non-coplanar, distant retrograde orbit transfer around Europa. The
initial state is given by the position and velocity vector in the rotating frame where Europa is at the
center, the x-axis points along the Jupiter-Europa line, and the z-axis points along the system
angular momentum vector. The target state is given by the orbit elements: semi-major axis,
eccentricity, inclination for the orbit defined by the Europa gravity only.

x
(km)

y
(km)

z
(km)

vx

(km/s)
vy

(km/s)
vz

(km/s)Initial
20,579 0 0 0 -0.9995 0

Thrust
(N)

Specific
Impulse

(s)

Initial
Mass
(kg)

Semimajor axis
(km) eccentricity inclination (deg.)

Target
[7000,  9000] [0.0, 0.2] [130, 140]

4.98 7365 25000
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OPTIMIZATION   RESULTS

Problem I: two-body coplanar orbit transfer around the Earth

In this problem, the Earth is the only gravitational body and is approximated as a
point mass. Figure 2 shows the Pareto-optimal solutions found with the present methods.
The Pareto-optimal solutions have one percent of error tolerances between the computed
final orbit and the given target orbit. The present solutions are compared with the
solutions found with GA-Q-Law, which is an optimized heuristic control law based on a
Lyapunov feedback control law named Q-law and a genetic algorithm [11-17]. It has been
demonstrated that the GA-Q-Law finds a Pareto front of near-optimal solutions in a
reasonable computation time. The present method efficiently yields solutions comparable
to GA-Q-law solutions for a wide range of flight times. Note that GA-Q-law solutions
(error<0.03%) have a much lower error tolerance than the present solutions.

Figure 3 shows eight Pareto-optimal trajectories selected among the Pareto-optimal
solutions found with the present method. As the flight time increases, several coast (no-
thrust) arcs (green dashed lines) are inserted around the apoapsis. These variations
demonstrate how propellant is saved with the expense of flight time in this transfer. As
expected, thrust around the periapsis is more propellant efficient than other places and
the present method captures the efficient thrust mechanism.

Problem II:  restricted three-body, coplanar DRO transfer in Jupiter-Europa
system

This problem is a restricted three-body, coplanar DRO transfer around Europa, the
icy Galilean moon closest to Jupiter. The gravitational fields of Jupiter and Europa are
included as point masses, while the gravitational fields of the other moons are excluded.
The dynamics of the spacecraft are described in the rotating frame where Europa is at the
center, the x-axis points along the Jupiter-Europa line, and the z-axis points along
Europa’s angular momentum vector with respect to Jupiter.

Figure 4 shows the Pareto-optimal solutions obtained with the present method in
comparison with the solutions obtained with Mystic, a high-fidelity trajectory
optimization software package based on the static/dynamic control algorithm [29,30].
The solutions with the present method have one percent of error tolerances between the
final state and the given target state. Specifically, the final position has the error of up to
206 km in x and y values and the final velocity has the error of up to 0.01 km/s. Mystic
solutions have a tighter error tolerance which is below 0.1 percent. Because Mystic
utilizes local gradients in finding optimal solutions, the refinement of the solutions at the
final state is relatively easier than the present method where no local gradients are used.
The present method is not suited to refine the solutions up to the error level of Mystic
solutions. Due to the difference in the error tolerance level, Mystic solutions have a higher
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Delta V or a longer flight time than our solutions.

This six-state to six-state transfer leads to a disjointed Pareto front with no Pareto-
optimal solution in some range of flight times. This does not mean that there is no feasible
trajectory in some flight times. The disjointed Pareto front represents that for a certain
range of flight time the increase of the flight time does not lead to the saving of propellant.
This situation is attributed to our target state that is one particular location on a DRO
instead of a phase-free location on a given DRO. This concept is highlighted by
comparing the results to those presented in Ref. [6] where the same problem is solved
except the target DRO orbit is phase-free.  

Figure 5 shows the variations of the trajectory and control profile for a few selected
Pareto-optimal solutions. As the flight time increases, more and wider coast arcs (green
dashed lines) are inserted around the y-axis. This shows that thrust around the y-axis is
propellant efficient for this transfer.    

Problem III: restricted three-body, non-coplanar, phase-free DRO transfer in
Jupiter-Europa system

This problem is a restricted three-body, non-coplanar DRO transfer around Europa,
involving about 40 degrees of inclination change. The initial state of this problem is given
by a six-state vector, while the target state is given by three orbit elements (semi-major
axis, eccentricity, and inclination) of the orbit defined by the Europa gravity only. The
target orbit elements fluctuate in time, but are relatively stable for over 100 Earth days.
Considering the fluctuation of the target orbit elements, our target conditions are loose and
given by the range of the temporal variation of the orbit element, as listed in Table III.
Because this transfer involves a large inclination change, all six initial co-state variables
including beta and beta dot are optimized in contrast to the previous two problems.

We have performed 10 independent optimization runs with different random seeds
and genetic-algorithmic parameters such as population size and reproduction operators.
The best Pareto front is found with an optimization run using the population size of
10,000 and the maximum generation number of 400. Figure 6 plots the result of the best
optimization run. The figure shows the progress of the Pareto fronts as the optimization
process proceeds. The Pareto front becomes more optimal and wider as more generations
(iterations in the genetic algorithm) are processed. The final Pareto front is disjointed.
This implies either the absence of Pareto-optimal solutions in some flight times or the
failure of finding Pareto-optimal solutions with the present method. More independent
optimization runs are needed to identify the cause.

Figure 7 shows the dynamics of the orbit element for two boundary solutions (the
shortest and longest flight-time solutions) of the Pareto front at generation 400. One
reaches the target DRO after 26.0 days and the other after 28.2 days. After reaching the
target, the trajectories are propagated for additional 40 days without thrust to monitor the
stability of the final orbit. Both trajectories remain stable as intended.
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The stability of a DRO is closely related to its out-of-plane motion and its proximity
to the central body. Accordingly, Figure 8 is a surface plot of the time until impact or
escape for a DRO around Europa with specified initial inclination and close approach
distance [31].  The DROs generally enjoy a peninsula of stability when they are close to
Europa and have inclinations above 135 degrees. The initial and final target orbits for
Problem III were intentionally selected to be near the stability boundary. To examine the
intermediate stability of the two Pareto front solutions, the discreet close approach
points on each trajectory are plotted on top of the stability map.  In both cases, the
trajectories meander into the unstable region where small perturbations to the control can
have large affects on the orbit.  This is expected for orbits that seek to minimize fuel
expenditures because thrusting is more efficient in the unstable regions.  Since the Pareto
optimal solutions also seek to minimize time, the paths of the solutions are generally
straight, which keeps them near the stable regions.  If fuel is the only objective, the
optimal trajectories will likely take a less direct approach through the regions of greater
instability [31,32].  The paths of both trajectories are consistent with the expected
optimal path.

The top view (x-y plane) and side view (x-z plane) of the two trajectories in the
rotating frame centered at Europa are plotted in Figure 9. The thrust profiles of the two
solutions are described in Figures 10 and 11 in terms of thrust angles and magnitudes,
respectively. The thrust angle is defined by the relative angle between the thrust vector
and the spacecraft velocity vector in the rotating frame. Initially, in order to optimally
change the inclination, the thrust vector is perpendicular to the velocity when the
spacecraft is near Europa’s orbit plane. Towards the end of the trajectory, the thrust
vector generally points against the velocity vector to reduce the semi-major axis. The plot
of the thrust magnitudes in Figure 11 shows the bang-bang maneuvers structure of the
Primer Vector control law. Note there are multiple coast arcs in each trajectory. The
solution with the flight time of 26 days has very short coast arcs, indicating that it is close
to the shortest flight time solution.  

CONCLUSIONS
We have demonstrated a new method to obtain Pareto-optimal solutions for low-

thrust orbit transfers for both two-body and three-body problems. The method combines
the Primer Vector control law and the multi-objective parallel genetic algorithm, where the
Primer Vector control law generates a thrust profile for a given initial value of a co-state
vector and the multi-objective parallel genetic algorithm finds the initial value that both
satisfies the target state’s boundary condition and minimizes ΔV(or propellant mass) and
flight time. The optimization method yields in a single run a set of Pareto-optimal
solutions, which demonstrates the trade-off between ΔV and flight time for a given low-
thrust orbit transfer. The method is successfully applied to three orbit transfer problems
and the resulting Pareto-optimal solutions are comparable to those from state-of-the-art
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optimization tools such as Mystic and GA-Q-Law.

The method is computationally efficient and requires relatively low domain expertise.
The only initial requirement of the optimization process is a reasonable bound on each
variable and a single synergistic optimization run leads to Pareto-optimal solutions. The
method efficiently finds the optimal solutions within a reasonable error threshold.
However, for a tighter error threshold, it is more desirable to delegate the refinement of
the final solutions to a local gradient-based algorithm. The method is best suited for the
rapid feasibility check and trade-space exploration in a low-fidelity mission design.   
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Figure 2. Pareto-optimal solutions found with the present method in
comparison with GA-Q-Law solutions for Problem I. The error
tolerance between the final and target orbit is 1% and 0.03% for the
present method and GA-Q-Law solutions, respectively. Since the GA-
Q-Law error tolerance is  lower, the present method estimates a lower
propellant-mass budget than GA-Q-Law.

Figure 3. Pareto-optimal trajectories found with the present method for Problem I.
The red solid and the green dashed lines represent thrusting and coasting arcs,
respectively. As the flight time increases, several coast arcs are inserted around the
apoapsis.
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Figure 4. Pareto-optimal solutions found with the present method in
comparison with Mystic solutions for Problem II. The error tolerance
between the final and target orbit is 1% and 0.1% for the present method
and Mystic solutions, respectively. Since the Mystic error tolerance is ten
times lower, the present method estimates a lower Delta V budget than
Mystic. The general trends of the two solution sets are very similar.

Figure 5. Pareto-optimal trajectories found with the present method for Problem II. The red solid and
the green dashed lines represent thrusting and coasting arcs, respectively. As the flight time increases,
several coast arcs are inserted around the y-axis.
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Figure 6. Pareto-optimal solutions found for Problem III. As the
population evolves in the process of the genetic algorithm, the Pareto-
optimal solutions improve in terms of both Pareto-optimality and the wide
spread of the Pareto front.

Figure 7. Orbit dynamics of two Pareto-optimal solutions found for Problem III.
The trajectories are propagated without thrust for additional 40 days after reaching
the target DRO state in order to monitor the stability of the final DRO state. Both
trajectories remain stable. The vertical dashed lines indicate the flight time at
which the orbit reaches the target and the thrust is turned off thereafter.
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Figure 8. Stability map for distant retrograde motion in the Jupiter-Europa system.
The color represents the time until impact or escape for DROs with specified initial
closest approach and inclination.  The paths of two Pareto optimal solutions from
Problem III are shown.

Figure 9. Top view (x-y plane) and side view (x-z plane) of trajectories
of two Pareto-optimal solutions of Problem III. The coordinates of the
trajectories are defined in the rotating frame.    
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Figure 10. Thrust angles of two Pareto-optimal solutions of Problem
III. The thrust angle is defined by the angle between the thrust
vector and the spacecraft velocity vector in the rotating frame.  When
the thrust magnitude (Figure 11) is zero during coasts, the thrust
angle is still defined according to the Primer Vector  control law.

Figure 11. Thrust magnitudes of two Pareto-optimal solutions of Problem III.
It has a “bang-bang” structure with the thrust magnitude of 4.98 N when
thrusting. The solution with the flight time of 26 days has four very short
coasting arcs, indicating that it is close to the shortest flight time solution.  
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